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CS103 Practice Midterm Exam

This midterm exam is open-book, open-note, open-computer, but closed-network.  This means 
that if you want to have your laptop with you when you take the exam, that's perfectly fine, but 
you must not use a network connection.  You should only use your computer to look at notes 
you've downloaded in advance.  Although you may use laptops, you must hand-write all of your 
solutions  on this  physical  copy of the  exam.  No electronic  submissions  will  be considered 
without prior consent of the course staff.

Normally, we would provide space on the exam for you to write your answers, but in the interest  
of saving paper we've eliminated most whitespace from this practice exam.

You have three hours to complete this midterm.  There are 180 total points, and this midterm is 
worth 15% of your total grade in this course.  The first three problems are shorter and simpler 
than the last three, so be sure to allocate your time appropriately.  You may find it useful to read  
through all the questions to get a sense of what this midterm contains.

Good luck!

Question Points Grader

(1) First-Order Logic (20) /20

(2) Finding Flaws in Proofs (20) /20

(3) Finite Automata (20) /20

(4) Utopian Tournament Graphs (40) /40

(5) The Well-Ordering Principle (40) /40

(6) Euclid's Algorithm (40) /40

(180) /180
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Problem 1: Translating into Logic (20 points total)

In each of the following, you will be given a list of first-order predicates and functions along 
with an English sentence.  In each case, write a statement in first-order logic that expresses the 
indicated  sentence.   The  statement  you  write  can  use  any  first-order  construct  (equality, 
connectives, quantifiers, etc.), but you must only use the predicates and functions provided.

As an example, if you were given the predicate Integer(x), which returns whether x is an integer, 
and the function  Plus(x, y), which returns x + y, you could write the statement “there is some 
even integer” as

∃n. ∃k. (Integer(n)  Integer(k)  Plus(k, k)∧ ∧  = n)

since this asserts that some number n is equal to 2k for integer k.  However, you could not write

n. (∃ Integer(n)  Even(n)∧ )

because there is no Even predicate.

(i) Never Gonna Give You Up (5 Points)
 
Given the predicate

Knows(x, y), which says that x and y know each other

and the constant symbols me, you, love, and rules, write a statement in first-order logic that says 
“We're no strangers to love.  You know the rules, and so do I.”  You can assume that if x does 
not know y, then x and y are strangers.

(ii) Gotta Catch 'em All! (5 Points)
 
Given the predicates

WantsToBeBetterThan(x, y), which says that x wants to be better than y,
WasBetterThan(x, y), which says that x was, in the past, better than y.

and the constant symbol me, write a statement in first-order logic that says “I want to be the very 
best, like no one ever was.”  (That is, I want to be better than everyone else, and in the past no  
one was better than everyone else.)
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iii) Good Advice (10 Points)
 
Given the predicates

Fools(x, y, t), which says that x fools y at time t,
Person(x), which says whether x is a person, and
Time(t), which says whether t is a time,

along with the constant you, write a statement in first-order logic that says “you can fool some 
people all the time or all the people some of the time, but not all the people all the time.”  To 
clarify, the statement “all the people some of the time” doesn't necessarily mean that there is 
some instant in time at which you can fool everyone; it just says that for any person, you can 
fool them at some point in time.
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Problem 2: Finding Flaws in Proofs (20 points)

Consider the following modification of the RS(x, y) function from the second problem set:

RS?
( x , y)={

1 if y=0

RS?
( x ,

y
2

)
2

if y>0 and y is even

1
x

RS ?
(x ,

y+1
2

)
2

otherwise

This function is completely wrong and, in most cases, does not correctly compute xy.  Below is a 
purported proof that this function does compute the correct value:

Theorem: RS?(x, y) = xy for all x  , ∈ℝ y  , where ∈ℕ x ≠ 0.
Proof: By strong induction.  Let P(y) be “for all x  , if ∈ℝ x ≠ 0, then RS?(x, y) = xy.”  We prove 

that P(y) is true for all y  .  As our base case, we prove P(0), that for any nonzero ∈ℕ x  ,∈ℝ  
RS?(x, 0) = x0.  Since RS?(x, 0) = 1 = x0 by definition, this is true.

For the inductive step, assume that for some y, for all natural numbers y' such that 0 ≤ y' ≤ y,  
P(y') is true, so for any nonzero x ∈ , ℝ RS?(x, y') = xy'.  We prove that P(y + 1) is true, that for 
all nonzero x  , ∈ℝ RS?(x, y + 1) = xy + 1.  We consider two cases:

Case 1: y + 1 is even.  Then RS?
( x , y+1)=RS?

( x ,
y+1

2
)

2

.  By the inductive hypothesis, 

RS?( x ,
y+1

2
)= x

y+1
2 , so RS?( x , y+1)=RS?( x ,

y+1
2

)
2

=(x
y+1

2 )2=x y+1  as required.

Case 2: y + 1 is odd.  Then RS?
( x , y+1)=

1
x

RS ?
(x ,

y+2
2

)
2

.  By the inductive hypothesis, 

RS?
( x ,

y+2
2

)=x
y+2

2 , so RS?
( x , y+1)=

1
x

RS?
( x ,

y+2
2

)
2

=
1
x
( x

y+2
2 )

2
=

1
x

x y+2
= x y+1  as 

required.

Thus in either case RS?(x, y + 1) = xy + 1, so P(y + 1) is true, completing the proof by 
induction. ■

(i) Does Not Compute (5 Points)

The RS? function does not correctly compute xy for most choices of x and y.  Give an example of 
a choice of x and y where x ≠ 0 and RS?(x, y) does not correctly compute xy.



5 / 9

(ii) Your Argument is Invalid (15 Points)

The above proof is incorrect.  What is wrong with its logic?  It is not enough to simply state that 
the proof is incorrect or to give a counterexample; instead, cite the specific part of the proof that 
is incorrect and explain what logical error is being made.

Problem 3: Finite Automata (20 points total)

Below are four finite automata, some of which are DFAs and some of which are not.  For each 
automaton, state whether or not it is a DFA.  If it is not, explain why that automaton is not a 
DFA.   You do not need to provide an explanation if the automaton is a DFA.  You may assume 
that the language is Σ = {0, 1}.

(i) The Preantepenultimate Automaton (5 Points)

start  0

     0

0

     1

(ii) The Antepenultimate Automaton (5 Points)

start  

1    

0   

0

    1

0

                
              0, 1

1

         0

  1
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(iii) The Penultimate Automaton (5 Points)

start  

       Σ

 
(iv) The Ultimate Automaton (5 Points)
 

Problem 4: Utopian Tournament Graphs (40 points total)

Recall from the second problem set that a tournament graph is a graph representing the outcome 
of a tournament with n > 0 players, in which each player plays each other player exactly once.  
Each game has a winner and a loser, and there are no draws.  A tournament graph is a graph of 
the outcome of the tournament, where each node corresponds to a player and each edge (u, v) 
means that player u won her game against player v.  In the second problem set, you proved that 
in any tournament graph, there is at least one tournament winner (a player who, for each other 
player, either won her game against that player, or won a game against someone who in turn beat 
that player).  

It is possible to construct tournament graphs with more than one tournament winner, and in fact 
it's possible to construct tournament graphs where everyone is a winner.  For example, here are 
tournament graphs with 1, 3, and 5 nodes where each player wins:

start  0

    01    

1

              0

1
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Prove that for any odd natural number n, there is at least one tournament graph for n players such 
that every player is a tournament winner.

Problem 5: The Well-Ordering Principle (40 Points)

On  the  third  problem  set,  you  explored  the  well-ordering  principle,  which  states  that  any 
nonempty  set  of  natural  numbers,  whether  finite  or  infinite,  contains  some smallest  natural 
number.  Here, you will explore some other applications of the well-ordering principle.

Suppose that we have two ordered sets (A, <A) and (B, <B), where <A and <B are strict orders.  A 
homomorphism from A to B is a function f : A → B with the property that

a∀ 1  A. a∈ ∀ 2  A. (a∈ 1 <A a2 → f(a1) <B f(a2))

That is, if one element of A is less than some other element of A, then after applying f to both of 
those elements the image of the first element is still less than the image of the second element.  If 
f is a homomorphism from A to B, we say that A is homomorphic to B.

Let ℤ- be the set of negative integers.  That is, ℤ- = {-1, -2, -3, …}.

(i) Integer Homomorphisms (10 Points)

Consider the set ℤ- ordered by the greater-than relation >.  Show that (ℤ-, >) is homomorphic to 
( , <) by giving an example of a function ℕ f : ℤ- →  such that if zℕ 0 and z1 are negative integers 
with z0 > z1, then f(z0) < f(z1).  Then prove that your function f is a homomorphism.
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Suppose that (S, <S) is a strictly, totally ordered set; that is, <S is a strict total order over S.  Given 
a nonempty subset T  ⊆ S, we say that some element t  ∈ T is a least element of T if for all other 
t'  ∈ T, it is true that t <S t'.

(ii) Homomorphisms and Well-Orderings (10 Points)

Suppose that some strictly, totally ordered set (S, <S) is homomorphic to ( , <).  Prove that anyℕ  
nonempty subset of S contains a leastz element.

(iii) Well-Ordering and Induction (20 Points)
 
Suppose that you have some property P(n) where:

• P(0)
• n  . (P(n) → P(n + 1))∀ ∈ℕ

Prove,  using  the  well-ordering  principle,  that  P(n)  is  true  for  all  natural  numbers  n.  (Hint:  
Suppose that P(n) is not true for all natural numbers n, and consider the set of natural numbers  
for which it is false.)

Problem 6: Euclid's Algorithm (40 points total)

For any pair of integers x and y, a number d is a common divisor of x and y if d divides x and d 
divides  y.  That is, there are integers m and n such that  x =  md and y =  nd.  If either  x ≠ 0 or 
y ≠ 0, then the  greatest common divisor of  x and  y is the largest number d that is a common 
divisor of x and y.

One of the oldest known algorithms is  Euclid's algorithm, which is used to find the greatest 
common  divisor  of  two  integers.   Euclid's  algorithm  is  sometimes  employed  in  RSA 
cryptography, which needs to search for numbers whose greater common divisor is 1.  In this 
problem, you will explore Euclid's algorithm and will formally prove its correctness.

(i) Same Difference (5 Points)
 
Prove that if d is a common divisor of x and y, then d is a divisor of ax + by for any integers a 
and b.
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(ii) The Division Algorithm (5 Points)
 
Recall from lecture that the division algorithm says that for any integers x and y, with y ≠ 0, that 
x can be written as x = qy + r for integers q and r such that 0 ≤ r < y.

Prove that d is a common divisor of x and y iff it is a common divisor of y and r.  

The result you've just proven shows that the set of divisors of x and y is the same as the set of 
divisors of y and r (if y ≠ 0).  This means that the greatest common divisor of x and y must be the 
same as the greatest common divisor of  y and  r.  Euclid's algorithm, which dates back almost 
2300 years, is based on this principle.  The algorithm is defined as follows:

gcd (x , y )={ x if y=0
gcd ( y , r ) otherwise , where r is found by the division algorithm

In the remainder of this problem, you will prove that Euclid's algorithm is correct for all natural 
numbers  x and  y (except the special case where  x = 0 and  y = 0, where the greatest common 
divisor is not defined).

(iii) Proving the Base Case (10 Points)
 
Prove that the greatest common divisor of x and 0 is x for any nonzero natural number x.

(iv) Verifying the Algorithm (20 Points)
 
Prove that  gcd(x, y) returns the greatest common divisor of  x and y, assuming that  x and y are 
natural numbers and either x ≠ 0 or y ≠ 0.  As a hint, try using strong induction on y.


